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BaMgF4 is a ferroelectric nonlinear crystal with a very wide transparency window ranging from 125 nm to
13 µm of the wavelength. Therefore, it is a candidate material to generate ultraviolet or deep ultraviolet laser,
which is very important in lithography, semiconductor manufacturing, and advanced instrument development.
Here, the second-order birefringence phase-matching processes of the BaMgF4 crystal were studied, including
second-harmonic generation (SHG) and sum-frequency generation (SFG). In the experiments, we measured the
phase-matching angle, nonlinear frequency conversion efficiency, and angle bandwidth of SHG and SFG processes
of BaMgF4 crystal, which are in well agreement with the theoretical calculations. This study may promote the
research of nonlinear optical process of BaMgF4 crystal and also the further development of all-solid-state vacuum
ultraviolet lasers. ©2021Optical Society of America

https://doi.org/10.1364/AO.438688

1. INTRODUCTION

Coherent vacuum ultraviolet (VUV, wavelength λ< 200 nm)
light sources are of great interest in modern laser science and
technology, such as imaging, spectroscopy, and optical commu-
nications [1–8]. Presently, excimer lasers such as ArF (193 nm)
and KrF (248 nm) are mainly used in the UV wavelength region
[9,10]. However, these excimer lasers have several disadvantages
such as fast degradation, toxicity, and low beam quality [11].
Therefore, researchers have proposed to produce VUV light
sources assisted by the frequency conversion of nonlinear optical
(NLO) materials [12–14], which is a method to circumvent
the abovementioned problems of excimer lasers. The VUV
NLO material should have a bandgap larger than 6.2 eV, large
SHG coefficient, and sufficient birefringence to ensure phase
matching in the VUV wavelength range [15–18]. The widely
used NLO borate crystals LiB3O5 [19], β − BaB2O4 [18,20],
and KBe2BO3F2 (KBBF) [21] are featured by relatively strong
SHG coefficient with moderate birefringence. The KBBF has
a VUV cutoff wavelength of 150 nm with a rather moderate
birefringence value of 0.077 [5]. It is a popular NLO material
to generate laser with VUV wavelengths [22]. However, KBBF

crystals have a strong layered structure, and it is very easy to
crack along the c axis during the growth process. The crystal
is too thin to be cut along the phase-matching direction for
producing deep UV harmonic generations beyond 200 nm
[23]. Since the 1990s, with the emergence and development
of polarization technology at room temperature, a series of
ferroelectric fluoride crystals with short UV absorption edges
discovered in the middle of the last century have received atten-
tion, among which the most representative is the crystal of
barium magnesium fluoride (BaMgF4) [24]. The transmission
range of BaMgF4 crystal is from 125 nm to 13 µm, which is a
VUV ultratransparent crystal. It is one of the strong candidates
for generating VUV all-solid-state lasers [25]. In addition,
the BaMgF4 crystal is a ferroelectric crystal. The quasi-phase-
matching (QPM) method can take full advantage of the wide
transparency of BaMgF4 in the UV wavelength region [21]. The
two-dimensional nonlinear photonic structure of BaMgF4 is
also possible to generate nonlinear harmonic waves in multiple
wavelengths and directions [26]. However, experiment on the
second-order birefringence phase-matching process of BaMgF4

have still been not studied.
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In this paper, we theoretically and experimentally studied
the second-order birefringent phase-matching process (SHG
and SFG) of the BaMgF4 crystal. We observed SHG with the
wavelength of 375–550 nm and measured the SH intensity,
nonlinear frequency conversion efficiency, and the angular
bandwidth with the increase of the fundamental frequency
(FF) light, which are in good agreements with the theoreti-
cal prediction. The shortwave limit of the birefringent phase
matching should be 573 nm of the FF wavelength through the
phase-matching theory. However, since the effective nonlinear
coefficient at FF wavelength 573 nm is 0, the SHG process did
not appear. Besides, we did not effectively detect the SHG when
the wavelength was less than 375 nm because of the relative
smaller effective nonlinear coefficient. We also measured the SF
intensity and the angle bandwidth of the SFG process by using
1152 and 576 nm laser in the BaMgF4 crystal, which are well in
agreement with the theoretical calculations.

2. RESULTS AND DISCUSSION

In our experiment, the BaMgF4 bulk crystal is grown by the
Bridgman–Stockbarger method [27], which cut along the opti-
cal main axis direction with the size of 0.7 cm× 1 cm× 1.3 cm
as shown in Fig. 1(a). The schematic of the SHG process
experimental setup is shown in Fig. 1(b). In the experiment,
a nanosecond laser with wavelength tunable from 400 to
2000 nm is used. The light emitted from the laser is focused on
the BaMgF4 crystal after adjusting the intensity and polariza-
tion by using a half-wave plate (HWP) and Glan–Taylor prism
(GTP), which is not shown in Fig. 1(b). A precision rotating
table is used to rotate the angle of the BaMgF4 crystal. After the
BaMgF4 crystal, a prism is used to separate the light with differ-
ent wavelengths. The SHs with the wavelengths of 375–550 nm
are detected on the screen. Part of the experimental results are
shown in Fig. 1(c), which are, respectively, corresponding to
550, 525, 500, 475, 425, and 375 nm for the SH.

We further measured the change of the SH intensity with
the variation of FF light intensity. The SH intensity can be
expressed as

ISH ∝ |I0|
2(deffL/(2πλ))2 sin c 2(1kL/2), (1)

where I0 is the FF light intensity, L is the crystal length, λ is
the wavelength of the FF light, deff is the effective nonlinear
coefficient of BaMgF4 crystal, and 1k = 2k1 − k2 is the phase
mismatching between the wavevector of FF (k1) and SH waves
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Fig. 1. (a) BaMgF4 crystal grown by the Bridgman–Stockbarger
method. (b) Schematic of the experimental setup for SHG.
(c) Experimental results of the SHG with the wavelengths of 550,
525, 500, 475, 425, and 375 nm.

(k2). In case of the birefringence phase-matching process, there
is a squared relationship between the SH wave intensity and the
FF light intensity. Without loss of generality, we measured the
power changing of the SHG with the increase of FF power at the
wavelengths of 750, 850, 950, and 1050 nm, which is shown in
Fig. 2(a). The experimental results are in good agreement with
the theoretical predictions corresponding to Eq. (1). Besides,
we rotated angle of BaMgF4 crystal around the phase-matching
angle to detect its angle bandwidth with the FF wavelength of
750 nm. The relationship between the SH intensity and the
incident angle of the FF light α is shown in Fig. 2(b), which is
in good agreement with the theoretical prediction according
to Eq. (1). Besides, the SHG efficiency at the phase-matching
condition is shown as

ηSH = |ISH|/|I0| = |I0|(deffL/(2πλ))2. (2)

We measured the nonlinear frequency conversion efficiency
of the SHG processes with FF wavelength of 750, 850, 950,
and 1050 nm, which is shown in Fig. 2(c). We can see that the
nonlinear conversion efficiency has a linear correlation with the
FF power, which is in good agreement with the theory.
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Fig. 2. (a) Relationship between SH power and input FF light
power. (b) Angle bandwidth of the SHG process. (c) SH efficiency in
our experiment with FF wavelengths of 750, 850, 950, and 1050 nm.
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BaMgF4 is a biaxial crystal [28], and the refractive index ni

along the wave vector direction can be calculated by

k2
x

(n−2
i − n−2

ix )
+

k2
y

(n−2
i − n−2

iy )
+

k2
z

(n−2
i − n−2

iz )
= 0, (3)

where kx , ky , and kz represent the projection of the wave vector
of light on the main axis. nix, niy, and niz represent the refractive
index on the main axis. In the spherical coordinate system, the
component of the incident light wave vector k along the three
main axis directions can be written as kx = sin(θ) cos(φ)k,
ky = sin(θ) sin(φ)k, and kz = cos(θ)k, where θ is the angle
between the k and z axes, and φ is the angle between the k pro-
jection in the x − o − y plane and the x axis. By solving Eq. (3),
two solutions n f and ns can be obtained, which represent the
large and small refractive index, respectively.

In BaMgF4 crystals, the phase-matching method can
be specifically divided into type I (ss-f ) and type II (sf-f ),
which correspond to ns

1ω1 + ns
2ω2 = n f

3ω3 (type I) and
ns

1ω1 + n f
2ω2 = n f

3ω3 (type II). The relationship between
θ and φ under the condition of birefringence phase matching
can be numerically solved as shown in Fig. 3. The theoretical
shortwave limit is 573 nm of the FF light wavelength as shown
by point A in Fig. 3. However, we only detected the SHG within
the FF light wavelength range of 750–1200 nm in our exper-
iment. That is because the effective nonlinear coefficient of
the BaMgF4 crystal is 0 near point A in Fig. 3. In the y − z
plane (θ = π/2), the effective nonlinear coefficient of the
phase-matching type I (zz-e) can be written as deff = d23 cos(φ)
[29]. Therefore, we did not effectively detect the SHG when
the wavelength is less than 375 nm because of the relatively
smaller effective nonlinear coefficient aroused by the smaller φ.
In addition, the type I (ee-x) does not exist because the effective
nonlinear coefficient is 0 in the x − z plane (φ = π/2). In
our experiments, the phase-matching angles of the SHG are
coincident with the theoretical prediction.

In order to further shorten the emitted wavelength of
BaMgF4 crystals, SFG experiments are conducted. The
schematic of our experimental setup for SFG in BaMgF4

crystal is shown in Fig. 4(a). We use the nanosecond laser with
the wavelength of 1152 nm as the incident light. The FF light is
focused on the LiNbO3 (LN) crystal to generate the laser with
wavelength of 576 nm. The FF light and SHG with wavelength
of 1152 and 576 nm are focused on the BaMgF4 crystal at the
same time to produce the SFG. According to the calculation, the
phase-matching angle is almost near the main axis of BaMgF4
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Fig. 3. Theoretical and experimental comparison of SHG
phase-matching angle in BaMgF4 crystal.
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Fig. 4. (a) Schematic of the experimental setup for SFG. (b) SFG
experiment results of the SHG and SFG light with wavelength 576 and
384 nm. (c) Spectrum of light with wavelength of 576 and 384 nm.

crystal in this case. The BaMgF4 crystal is cut along the main
axis direction in the SFG process. Therefore, these two light
beams can increase the overlap during propagation inside the
BaMgF4 crystal to produce high-efficiency SFG. Finally, the
light beam is split by the prism and is analyzed by the light screen
and a spectrometer. The wavelengths of FF, SHG, and SFG
are 1152, 576, and 384 nm, respectively. The SFG experiment
results of the SHG and SFG light with wavelength 576 nm and
384 nm are shown in Fig. 4(b). The spectrum of light is shown
in Fig. 4(c).

The intensity of SFG light can be expressed as

ISF =
(8ω2

3d2
eff I1 I2L2)

n1n2n3c 3ε0
sin c 2(1kL/2)∝ |I1|

3, (4)

where I1 is the input light intensity of 1152 nm. ω3 is the fre-
quency of SFG. I2 is the light intensity of 576 nm, which is the
SHG output generated after LiNbO3 crystal. n1, n2, n3 are the
refractive indexes corresponding to the three lights. c is the speed
of light in a vacuum. is the vacuum dielectric constant. We also
calculated and experimentally obtained the angle bandwidth
in the SFG experiment and plotted the relationship between
the intensity of SFG light with the angle of the crystal as shown
in Fig. 5(a). The relationship between the normalized SFG
intensity and the phase mismatch angle β is the square of the
sinc function. In addition, we also measure the change of the
normalized SFG intensity with the input power of FF light,
which is shown in Fig. 5(b). The relationship between the SFG
signal and the FF light also presents a cubic relationship, which
is in good agreement with the experiment.

We have carried out a detailed study on the SHG and SFG of
the vacuum ultraviolet ultratransparent crystal BaMgF4 exper-
imentally for the first time as far as we know. This study further
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confirmed the correctness of the SHG phase-matching theory.
The SHG intensity, angle bandwidth, and conversion efficiency
are in good agreement with the theoretical predictions. The
realization of the sum-frequency process also makes it feasible to
use BaMgF4 crystalsto generate lasers closer to VUV.

The second-order birefringence phase matching of the
BaMgF4 crystal studied in this paper can fully confirm its
nonlinear optical properties, which promote the research of
nonlinear optical process of BaMgF4 crystal and lay the founda-
tion of UV lasers. In the future, the BaMgF4 crystal is expected
to realize VUV waveband harmonic generation by using its
ferroelectric property to achieve quasi phase matching (QPM)
in periodically polarized crystal. Therefore, the highly compact
VUV laser based on BaMgF4 crystal can bring significant appli-
cations in imaging, spectroscopy, and optical microfabrication
in the future.

3. CONCLUSION

We experimentally studied the second-order birefringence
phase-matching processes of the vacuum ultraviolet ultratrans-
parent crystal BaMgF4, including SHG and SFG. The SH with
the wavelength of 375–550 nm are observed. Without the loss
generality, we measured the SH intensity, nonlinear frequency
conversion efficiency, as well as the angular bandwidth with the
intensity increasing of the FF light at some fixed wavelength,
which are in good agreement with the theoretical prediction.
According to the theoretical prediction, the shortwave limit
of the birefringence phase matching should be 573 nm of the
FF wavelength. However, we did not observe the SH radiation
because the effective nonlinear coefficient is 0 at 573 nm of
the FF wavelength. Besides, we did not effectively detect the
SHG when the wavelength is less than 375 nm because of the
relatively smaller effective nonlinear coefficient. In addition,
we measured the SFG process of the BaMgF4 crystal by using
1152 and 576 nm lasers. The normalized SF intensity and the
angle bandwidth are measured with the changing of the inci-
dent light power, which are also in good agreement with the
theoretical prediction. This study may promote the research
of nonlinear optical processes of BaMgF4 crystal and also the
further development of all-solid-state vacuum ultraviolet lasers.
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